Horizontal Transfer and Evolution of Prokaryote Transposable Elements in Eukaryotes
نویسندگان
چکیده
Horizontal transfer (HT) of transposable elements (TEs) plays a key role in prokaryotic evolution, and mounting evidence suggests that it has also had an important impact on eukaryotic evolution. Although many prokaryote-to-prokaryote and eukaryote-to-eukaryote HTs of TEs have been characterized, only few cases have been reported between prokaryotes and eukaryotes. Here, we carried out a comprehensive search for all major groups of prokaryotic insertion sequences (ISs) in 430 eukaryote genomes. We uncovered a total of 80 sequences, all deriving from the IS607 family, integrated in the genomes of 14 eukaryote species belonging to four distinct phyla (Amoebozoa, Ascomycetes, Basidiomycetes, and Stramenopiles). Given that eukaryote IS607-like sequences are most closely related to cyanobacterial IS607 and that their phylogeny is incongruent with that of their hosts, we conclude that the presence of IS607-like sequences in eukaryotic genomes is the result of several HT events. Selection analyses further suggest that our ability to detect these prokaryote TEs today in eukaryotes is because HT of these sequences occurred recently and/or some IS607 elements were domesticated after HT, giving rise to new eukaryote genes. Supporting the recent age of some of these HTs, we uncovered intact full-length, potentially active IS607 copies in the amoeba Acanthamoeba castellani. Overall, our study shows that prokaryote-to-eukaryote HT of TEs occurred at relatively low frequency during recent eukaryote evolution and it sets IS607 as the most widespread TE (being present in prokaryotes, eukaryotes, and viruses).
منابع مشابه
Cargo capacity of phages and plasmids and other factors influencing horizontal transfers of prokaryote transposable elements
Horizontal transfer of transposable elements (TEs) plays a key role in prokaryote genome evolution. Most TEs do not encode the enzymatic machinery allowing them to transfer between host cells and it is widely assumed in the literature that horizontal transfer of prokaryote TEs is mediated by other mobile genetic elements such as phages and plasmids. In a recent study, we have shown that phages ...
متن کاملTransposons and their application in plant pathology
Prokaryote, viruses, and eukaryotes chromosomes contain fragments of DNA can move and migrate to other parts of the chromosome calling as Transposition and play an important role in new combinations of gene production. DNA fragments carrier the genes or transposons are the transposable elements that may called gene mutant also. Transposons can move to another position of the same chromosome or ...
متن کاملHorizontal Transfer, Not Duplication, Drives the Expansion of Protein Families in Prokaryotes
Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We a...
متن کاملTransposons in filamentous fungi--facts and perspectives.
Transposons are ubiquitous genetic elements discovered so far in all investigated prokaryotes and eukaryotes. In remarkable contrast to all other genes, transposable elements are able to move to new locations within their host genomes. Transposition of transposons into coding sequences and their initiation of chromosome rearrangements have tremendous impact on gene expression and genome evoluti...
متن کاملShort- and Long-term Evolutionary Dynamics of Bacterial Insertion Sequences: Insights from Wolbachia Endosymbionts
Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence tu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2013